Faciliy	Actual TN (mg/l)	Actual TP (mg/l)	Facility Assumptions	LOT 7.0 TN upgrade	LOT 7.0 LOT 3.0 TN TN upgrade upgrade cost/year
Conrad	7	0.15	Extended aeration without chemical P precipitation. Optimized for LOT7.0TN.	N/A, currently meeting LOT	Retrofit with \$0.00 anoxic zone to convert
Chinook	2.9	1.84	Oxidation ditch, optimized LOT3.0TN; no P removal.	currently meeting	\$0.00 currently meeting
Hinsdale-	13	1.06	Extended aeration package plant. Incomplete nitrification/denitrification; no Premoval.	N/A, no- RPA/WQ BELs- needed	N/A, no- \$0.00 RPA/WQ BELs- needed
Manhattan	8.7	0.6	Fixed film system with nitrification; unknown P removal.	Optimiza tion to meet LOT	with \$700 denitrific ation
Colstrip	unk	unk	Oxidation ditch, unknown performance.	Optimiza tion to meet LOT	with anoxic zone to convert
East Helena	10.6	0.53	Activated sludge plant. Pretty good nitrification, little denitrification. Good P removal.	Optimiza tion to meet LOT	Retrofit with \$900 denitrific ation filters
Stevensville	14.8	2.835	Oxidation ditch, with nitrification but limited nutrient removal. Planning for a BNR upgrade.	N/A, assume new BNR plant can meet LOT	new plant \$0.00 with denitrific ation
			Majors		

Bozeman	4.4	4.4	5-stage Bardenpho (biological N removal and EBPR). Effluent TP suggests that chemical P removal is also being used.		Optimiza \$0.00tion to meet LOT
Butte Silver Bow	2.4	2.4	New MBR plant, so data is very limited. TP is reportedly around 0.2 now. Assume LOT3.0TN and LOT0.5TP currently.	N/A, currently meeting LOT	N/A, \$0.00 currently meeting LOT
Hamilton	3.13	3.13	Well under design flow, facility appears to be biological N removal or optimized accordingly. Secondary plant with simple modifications for TP removal.	N/A, currently meeting	N/A, currently \$0.00 meeting LOT and RPA/WQ BEL
Havre	7.92	7.92	A new BNR plant is under construction. Assume new facility will meet LOT3.0TN and LOT0.5TP.	N/A, assume new BNR plant can meet LOT	assume new BNR \$0.00 plant can meet RPA/WQ
Helena	5.58	5.58	plant with no specific TP removal. Plant is reportedly already optimized and needs to do some small capital	N/A, currently meeting LOT	denitrific \$0.00 ation filters or step feed
Kalispell	8.4	8.4	Johannesburg process. biological N removal/EBPR. Not fully denitrifying. Excellent TP removal; mostly EBPR.	Optimiza tion to meet LOT	tค.ศ.ค.ค. denitrific \$2,800 ation filters or step feed
Lewistown	2.05	2.05	Biological N removal/EBPR system. Meeting LOT3.0TN.	N/A, currently meeting LOT	N/A, \$0 currently meeting LOT
Whitefish	24.2	24.2	TP removal. Plenty of capacity. Requires replacement to meet LOT for TN. An SBR is designed for construction in 2020 and it is assumed that it will meet	assume new SBR plant can	Retrofit with \$0denitrific ation filters
Billlings	17.6	17.6	A2/O system with UV disinfection. A2/O capable of 6 10 mg/l TN; 1-2 mg/l TP.	Optimiza	\$10,474Replace ment with 5- stage Bardenp ho

LOT 3.0 TN LOT P upgrade upgrade cost/year to 0.5 mg/L TP	LOT P LOT P upgrage to upgrade to 0.1 mg/L TP 0.5 mg/L TP cost/year	LOT P upgrade to LOT P upgrade 0.1 mg/L TP to 0.05 mg/L TP cost/year	LOT P upgrade to 0.05 mg/L TP cost/year
N/A, \$159,155 meeting LOT Retrofit \$0.00with	Optimize chemical \$0.00 precipitation and solids removal chemical precipitation and tertiary	High dosage chemical \$900 precipitation and advanced solids removal chemical \$496,533 precipitation	\$956,245 \$959,726
EBPR N/A, no RPA/WQ BELs needed	and tertiary ***********************************	and advanced N/A, no- \$0.00 RPA/WQBELs- needed	\$0.00
N/A, \$181,466 currently meeting LOT Retrofit \$186,141 with	Chemical \$0.00 precipitation and tertiary filtration Chemical \$352,218 precipitation	chemical \$389,227 precipitation and advanced rngiduosage I chemical \$572,640 precipitation	\$727,432 \$1,129,116
EBPR N/A, \$204,600 currently meeting LOT	and tertiary filtration Chemical \$0.00 precipitation and tertiary filtration	and advanced High dosage chemical \$441,697 precipitation and advanced solids removal	\$840,741
N/A, assume \$172,000 new BNR plant can meet LOT	Chemical \$0.00 precipitation and tertiary filtration	N/A, LOT is \$367,274 below RPA/WQBEL	\$0.00

Majors

		0 1: :		
N/A	۸,	Optimize	High dosage	
CHE	rently	chemical	chemical	ÅF 222 225
57 600	éting \$0.	.00 precipitation	\$10,700 precipitation	\$5,389,300
LOT	-	and solids	and advanced	
		removal	solids removal	
	A, new	Optimize	High dosage	
plar		chemical	chemical	
\$0.00 curi		.00 precipitation	\$9,500 precipitation	\$3,804,600
	eting -	and solids	and advanced	
LOT		removal	solids removal	
One				
poir		N/A, LOT is	N/A, LOT is	
\$0.00 alur	51334	00 below	\$0.00 below	\$0.00
	ment	RPA/WQBEL	RPA/WQBEL	
er	f: +			
	ofit			
poir		N/A, LOT is	N/A, LOT is	
\$0.00 alur	51237	00 below	\$0.00 below	\$0.00
	ment	RPA/WQBEL	RPA/WQBEL	
er	g∽f:+			
one		Chemical	High dosage	
alur	m·	nrecinitation	chemical	
5966.900_	"', \$248,0 ment	000 precipitation and tertiary	\$746,700 precipitation	\$3,686,400
er	····Circ	filtration	and advanced	
	-afi+		solids removal	
N/A	۸,	Optimize	High dosage	
coce ooo curi	rently to	chemical	chemical	¢2 696 400
\$966,900 me	ېرې eting	.00 precipitation	\$4,600 precipitation	\$3,686,400
LOT	-	and solids removal	and advanced solids removal	
N/A		Temoval	solius reiliovai	
IN/ A	n, rently	N/A, no	N/A, no	
\$0.00 curi	eting \$0.	.00 RPA/WQBELs	\$0.00 RPA/WQBELs	\$0.00
LOT	_	needed	needed	
201			High dosage	
N/A	۸,	Chemical	chemical	
\$435,600 ^{curi}	rently so	00 precipitation	\$318,214 precipitation	\$2,326,700
mee	eting	and tertiary	and advanced	72,320,700
LOT	-	filtration	solids removal	
\$13,598,048 Add	54.804.5	12 Add chemical	\$15,187,169 High dosage	\$22,985,371
•	iary	precipitation	chemical	<i>+,</i>
filte	-	and tertiary	precipitation	
		filters	and advanced	
			solids removal	

MHI (Data: American Community Survey (ACS) 5- year 2011-2015 Estimates)	Old current sewer bill/year	Old current % MHI	Number of households	Current sewer bill/year	Current Sewer Rate MHI	Achieving 7 mg/L TN and 0.5 mg/L TP %MHI	
\$39,063			2,501	\$522	1.34	1.34	1.34
\$41,974			1,300	\$501	1.19	1.73	2.10
\$50,625	-		-250 -		#VALUE!	NA ·	NA
\$52,135			1,500	\$943	1.81	1.81	2.31
\$84,145			2,214	\$766	0.91	1.10	1.22
\$44,828			2,114	\$557	1.24	1.24	1.71
\$32,337			1,920	\$224	0.69	0.69	1.28

\$45,729	\$372	0.84%	32,000	\$408	0.89	0.89	0.89
\$37,686	\$360	0.89%	33,000	\$331	0.88	0.88	0.88
\$27,907	\$240	0.52%	9,800	\$445	1.60	1.64	1.60
\$45,146	\$278	0.54%	31,005	\$218	0.48	0.49	0.48
\$49,852	\$362	0.78%	21,800	\$445	0.89	0.92	0.96
\$41,097	\$388	1.12%	5,923	\$366	0.89	0.89	0.89
\$35,990	\$718	1.88%	6,357	\$329	0.91	0.91	0.91
\$51,122			6,864	\$505	0.99	0.99	1.08
\$51,012			44,092	\$265	0.52	0.73	1.19

				<u>Secondary</u>	Score Calcu	ulation (pe	er Base N
ng/L TN and	Achieving 3 d mg/L TN and P 0.5 mg/L TP %MHI	mg/L TN and	mg/L TN and		Poverty Second score	LMI	LMI Second score
2.3	2 1.50	1.50	2.48	15%	2	28%	2
2.9	5 1.73	2.10	2.95	18%	2	32%	2
4	NA	NA	NA	10%	2	16%	2
2.7	4 2.04	2.54	2.97	5%	3	11%	
1.5	2 1.20	1.32	1.62	8%	2	11%	3
2.1	3 1.46	1.92	2.35	9%	2	20%	2
0.6	9 0.97	1.56	0.97	27%	2	48%	

1.26	0.89	0.89	1.26	21%	2	32%	2
1.18	0.88	0.88	1.18	20%	2	32%	2
1.60	1.64	1.60	1.60	25%	2	37%	2
0.48	0.49	0.48	0.48	16%	2	25%	2
1.23	1.01	1.05	1.32	14%	2	22%	2
2.41	1.29	1.29	2.80	16%	2	29%	2
0.91	0.91	0.91	0.91	7%	2	16%	2
1.65	1.11	1.20	1.77	12%	2	25%	2
1.54	1.34	1.80	2.15	13%	2	23%	2

Unemployment Unemplo rate* ent sco		МНІ	MHI score		ces lex	Taxes index score	Average Secondary Score	Sliding scale cost cap a % MHI (derived from Average Secondary Score; see page 7, Guidance)
3.70%	2	\$36,364		1	2.35	2	1.8	1.3
3.70%	2	\$37,344		1	3.72		1 1.6	1.1
2.90%	3	\$ 50,625		2N/A	4	I / A	2.25	1.75
2.20%	3	\$52,708		2	1.78		2 2.6	2.1
5.50%	1	\$82,303		3	2.21		2 2.2	1.7
3.00%	1	\$44,940		2	2.14		2 1.8	1.3
3.90%	2	\$29,519		1	2.58		2 1.6	1.1

2.20%	3 \$46,422	2	2.88	2	2.2	1.7
3.80%	2 \$37,654	1	4.37	1	1.6	1.1
3.90%	2 \$27,118	1	4.11	1	1.6	1.1
4.20%	2 \$44,601	2	1.89	2	2	1.5
3.00%	3 \$50,311	2	2.86	2	2.2	1.7
4.50%	2 \$40,511	1	2.55	2	1.8	1.3
3.20%	3 \$38,438	1	2.5	2	2	1.5
4.50%	2 \$48,813	2	6.07	1	1.8	1.3
3.30%	2 \$51,012			2	2	1.5

Can afford 7 Can afford 7 Can afford 3 Can afford 3 Can afford 3 mg/L TN and m

	no	no	no	no	no	no
	no	no	no	no	no	no
Do not include, they do not have RP						
	yes	no	no	yes	no	no
	yes	yes	yes	yes	yes	yes
	yes	no	no	no	no	no
	yes	no	n/a	yes	no	n/a
What Percent of Assessed Group Members (<1MGD) Can Afford It?	67%	17%	17%	50%	17%	17%

	yes	yes	yes	yes	yes	yes
	yes	yes	no	yes	yes	no
	no	no	no	no	no	no
New BNR plant in construction, assumed it can meet LOT	yes	yes	yes	yes	yes	yes
	yes	yes	yes	yes	yes	yes
	yes	yes	no	yes	yes	no
Do not include, they do not have RP						
	yes	yes	no	yes	yes	no
	yes	yes	no	yes	no	no

What Percent of Assessed Group						
Members (>1MGD) Can	88%	88%	38%	88%	75%	38%
Afford It?						